TU NO ESTAS SOLO O SOLA EN ESTE MUNDO SI TE GUSTO UN ARTICULO, COMPARTELO, DIFUNDELO EN LS REDES SOIALES FACEBOOK, TWITTER
SI TE GUSTO UN ARTICULO, COMPARTELO, ENVIALOS A LAS REDES SOCIALES : TWITTER, FACEBOOK

viernes, 2 de marzo de 2007

NOCIONES DE CONFINAMIENTO INERCIAL

Confinamiento inercial

De Wikipedia, la enciclopedia libre

 
El confinamiento inercial de fusión que emplea laseres ha progresado velozmente en los años 1970 y comienzos de los años 1980 hasta el punto de disponer de unos cuantos pulsos para fusionar un objetivo con diez millones de kilojoules. En la ilustración se puede ver un laser 10 beam LLNL NOVA, mostrado en 1984. Esta instalación viene a suplir el viejo proyecto de su predecesor, el laser Shiva.
El confinamiento inercial de fusión que emplea laseres ha progresado velozmente en los años 1970 y comienzos de los años 1980 hasta el punto de disponer de unos cuantos pulsos para fusionar un objetivo con diez millones de kilojoules. En la ilustración se puede ver un laser 10 beam LLNL NOVA, mostrado en 1984. Esta instalación viene a suplir el viejo proyecto de su predecesor, el laser Shiva.

La fusión por confinamiento inercial se consigue mediante el uso de varios haces de rayos láser (192 en el NIF), o bien de iones pesados acelerados, o de rayos X, enfocados en un pequeño blanco esférico (10 miligramos) donde se encuentra el combustible de deuterio-tritio.

Tabla de contenidos

[mostrar]

[editar] Proceso

Uno de los procesos de calentamiento de la materia es el de la compresión. En este caso lo que se pretende es que mediante un aumento de la presión aumente la densidad y la temperatura. Para aumentar la presión en un punto, se necesita hacer incidir un número grande de partículas sobre él. Refiriéndonos en este caso al significado más amplio del concepto de partícula o corpúsculo, como del concepto de presión.

Esto quiere decir, que se debe considerar los fotones (en la frecuencia de la luz visible, o de los rayos X) como partículas, con lo cual llevarán asociado un momento, que a su vez conlleva una fuerza que dará lugar a una presión. Y lo mismo sucede con los iones pesados. Esa presión se transmitirá por las sucesivas capas del blanco durante un tiempo que vendrá dado por las leyes de la inercia, la termodinámica y la mecánica de fluidos. Realizando el cálculo, se puede comprobar que el tiempo que transcurre para propagar la presión en todo el volumen de un blanco de algunos milímetros de radio es de apenas unos cientos de picosegundos.

[editar] Desarrollo de energía

Una micro-cápsula empleada como combustible en el confinamiento inercial de fusion (a menudo denominada "microballon") del tipo de las que se usan en el NIF y que rellena con una mezcla de gas deuterio y tritio en hielo. La cápsula es introducida en el holraum y es implosionada por el pulso de laser.
Una micro-cápsula empleada como combustible en el confinamiento inercial de fusion (a menudo denominada "microballon") del tipo de las que se usan en el NIF y que rellena con una mezcla de gas deuterio y tritio en hielo. La cápsula es introducida en el holraum y es implosionada por el pulso de laser.

Depositando sobre el blanco, en ese corto periodo de tiempo, una energía de ~5-10 MJ obtendremos las condiciones necesarias para lograr la fusión. El blanco alcanzará una densidad de 600 a 1000 y la temperatura necesaria para comenzar la ignición. Ahora mismo se están depositando en los blancos energías de unos 1000 MJ.

Si además conseguimos que el proceso se produzca con una frecuencia de 5 a 10 Hz, tendremos una planta de una potencia de ~1000 MW. Para ello se necesita que los pulsos tengan una duración de ~10 ns con una potencia en el haz emisor de ~1000 TW y una luminosidad de ~1014 - 1015 W.cm-2.

[editar] Instituciones Investigadoras

En estos momentos la demostración de funcionamiento del reactor mediante confinamiento inercial se está llevando a cabo en el NIF (National Ignition Facility) en Estados Unidos y en el LMJ (Laser MegaJoule) en Francia, con la misma energía del NIF, pero 240 haces láser en lugar de 192, dando más flexibilidad (y complejidad) a la instalación. Ambas instalaciones utilizan el ataque indirecto del blanco (enfoque de los haces laser en un holraum de alto Z que produce gran cantidad de rayos X que se enfocan en el blanco de deuterio-tritio) para conseguir la implosión.

Existen además otras plantas que estudian la fusión inercial, como el Gekko XII en Osaka (Japón) o la Omega-upgrade en Rochester (Reino Unido) para estudiar el ataque directo (Direct drive).

Véase también:


[editar] Enlaces externos

Saludos cordiales
RODRIGO GONZALEZ FERNANDEZ
CONSULTAJURIDICACHILE.BLOGSPOT.COM
Renato Sánchez 3586 dep 10
Santiago, Chile

No hay comentarios: